发布于2024-10-31 20:32 阅读(1052) 评论(0) 点赞(25) 收藏(0)
I have developed a convolution with a kernel set that reliably removes singular and protruding white dots when applied 2-3 times to an image of zeros (black) and ones (white):
import numpy as np
from PIL import Image
from scipy.ndimage import convolve
kernels = [
np.array([[1, 1, 1], [-4, 1, -4], [-4, -4, -4]]),
np.array([[-4, -4, 1], [-4, 1, 1], [-4, -4, 1]]),
np.array([[-4, -4, -4], [-4, 1, -4], [1, 1, 1]]),
np.array([[1, -4, -4], [1, 1, -4], [1, -4, -4]])
]
image_path = 'path/to/image/file'
with Image.open(image_path) as image:
if image.mode == 'RGBA':
image = image.convert('RGB')
image_np = np.array(image)
mask = np.isin(image_np, [200, 200, 200]).all(axis=-1)
binary_mask = np.zeros(image_np.shape[:2], dtype=int)
binary_mask[mask] = 1
for kernel in kernels:
convolution = convolve(binary_mask, kernel, mode='constant')
binary_mask[(binary_mask == 1) & (convolution >= 1)] = 0
The most important property of the convolution is that it preserves closed lines (e.g. the edge of a rectangle). However, the convolution only removes open lines (i.e. lines with two ends) completely if the convolution is performed half as often as the length of the line.
This is very ineffective for long lines. Can you help me to develop a kernel (set) that removes open 1-pixel-thick lines after a few convolutions, but preserves closed 1-pixel-thick lines?
作者:黑洞官方问答小能手
链接:https://www.pythonheidong.com/blog/article/2040405/e708ec1fa71d8ce5c42e/
来源:python黑洞网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
---无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事,而不是让内心的烦躁、焦虑,坏掉你本来就不多的热情和定力
Copyright © 2018-2021 python黑洞网 All Rights Reserved 版权所有,并保留所有权利。 京ICP备18063182号-1
投诉与举报,广告合作请联系vgs_info@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!