广告区
广告区
关注本站官方公众号:程序员总部,领取三大福利!
福利一:python和前端辅导
福利二:进程序员交流微信群,专属于程序员的圈子
福利三:领取全套零基础视频教程(python,java,前端,php)
发布于2022-06-25 19:28 阅读(262) 评论(0) 点赞(1) 收藏(2)
编辑:添加了 defT
usingpandas.cut
会改变 a 的结构吗pandas.DataFrame
?
我正在使用pandas.cut
以下方式将单个年龄年份映射到年龄组,然后进行聚合。但是,聚合不起作用,因为我最终NaN
在所有正在聚合的列中。这是我的代码:
cutoff = numpy.hstack([numpy.array(defT.MinAge[0]), defT.MaxAge.values])
labels = defT.AgeGrp
df['ageGrp'] = pandas.cut(df.Age,
bins = cutoff,
labels = labels,
include_lowest = True)
这是定义:
AgeGrp MaxAge MinAge
1 18 14
2 21 19
3 24 22
4 34 25
5 44 35
6 54 45
7 65 55
然后我将数据框传递给另一个函数进行聚合:
grouped = df.groupby(['Year', 'Month', 'OccID', 'ageGrp', 'Sex', \
'Race', 'Hisp', 'Educ'],
as_index = False)
final = grouped.aggregate(numpy.sum)
如果我通过这种方式将年龄更改为年龄组,则效果很好:
df['ageGrp'] = 1
df.ix[(df.Age >= 14) & (df.Age <= 18), 'ageGrp'] = 1 # Age 16 - 20
df.ix[(df.Age >= 19) & (df.Age <= 21), 'ageGrp'] = 2 # Age 21 - 25
df.ix[(df.Age >= 22) & (df.Age <= 24), 'ageGrp'] = 3 # Age 26 - 44
df.ix[(df.Age >= 25) & (df.Age <= 34), 'ageGrp'] = 4 # Age 45 - 64
df.ix[(df.Age >= 35) & (df.Age <= 44), 'ageGrp'] = 5 # Age 64 - 85
df.ix[(df.Age >= 45) & (df.Age <= 54), 'ageGrp'] = 6 # Age 64 - 85
df.ix[(df.Age >= 55) & (df.Age <= 64), 'ageGrp'] = 7 # Age 64 - 85
df.ix[df.Age >= 65, 'ageGrp'] = 8 # Age 85+
我宁愿即时执行此操作,导入定义表并使用pandas.cut
,而不是硬编码。
先感谢您。
这也许是一种解决方法。
考虑以下复制您描述的症状的示例:
import numpy as np
import pandas as pd
np.random.seed(2015)
defT = pd.DataFrame({'AgeGrp': [1, 2, 3, 4, 5, 6, 7],
'MaxAge': [18, 21, 24, 34, 44, 54, 65],
'MinAge': [14, 19, 22, 25, 35, 45, 55]})
cutoff = np.hstack([np.array(defT['MinAge'][0]), defT['MaxAge'].values])
labels = defT['AgeGrp']
N = 50
df = pd.DataFrame(np.random.randint(100, size=(N,2)), columns=['Age', 'Year'])
df['ageGrp'] = pd.cut(df['Age'], bins=cutoff, labels=labels, include_lowest=True)
grouped = df.groupby(['Year', 'ageGrp'], as_index=False)
final = grouped.agg(np.sum)
print(final)
# Year ageGrp Age
# Year ageGrp
# 3 1 NaN NaN NaN
# 2 NaN NaN NaN
# ...
# 97 1 NaN NaN NaN
# 2 NaN NaN NaN
# [294 rows x 3 columns]
如果我们改变
grouped = df.groupby(['Year', 'ageGrp'], as_index=False)
final = grouped.agg(np.sum)
至
grouped = df.groupby(['Year', 'ageGrp'], as_index=True)
final = grouped.agg(np.sum).dropna()
print(final)
然后我们得到:
Age
Year ageGrp
6 7 61
16 4 32
18 1 34
25 3 23
28 5 39
34 7 60
35 5 42
38 4 25
40 2 19
53 7 59
56 4 25
5 35
66 6 54
67 7 55
70 7 56
73 6 51
80 5 36
81 6 46
85 5 38
90 7 58
97 1 18
关注本站官方公众号:程序员总部,领取三大福利!
福利一:python和前端辅导
福利二:进程序员交流微信群,专属于程序员的圈子
福利三:领取全套零基础视频教程(python,java,前端,php)
关注公众号回复python,免费领取 全套python视频,回复充值+你的账号,免费为您充值1000积分
作者:黑洞官方问答小能手
链接:https://www.pythonheidong.com/blog/article/1607336/1f635b4c5fa97ef1edc6/
来源:python黑洞网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
Copyright © 2018-2021 python黑洞网 All Rights Reserved 版权所有,并保留所有权利。 京ICP备18063182号-1
投诉与举报,广告合作请联系vgs_info@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!