+关注
已关注

分类  

暂无分类

标签  

暂无标签

日期归档  

2019-04(1)

2019-06(2)

2019-07(2)

2019-08(87)

2019-09(90)

数据结构与算法(5)——排序与搜索Ⅲ

发布于2020-03-29 10:03     阅读(150)     评论(0)     点赞(2)     收藏(1)


0

1

2

3

4

5

一、希尔排序

1.简介

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

2.希尔排序过程

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成)

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以1步长进行排序(此时就是简单的插入排序了)

3.希尔排序的分析

image
程序实现:

def shell_sort(alist):
    n = len(alist)
    # 初始步长
    step = n // 2
    #最外层:控制step长度
    while step>=1:
        # 外层:按步长进行插入排序
        for i in range(step,n):
            j=i
            #内层:按照上面的例子,这一步就是完成每一列的排序
            while j>=step and alist[j] < alist[j - step]:
                alist[j], alist[j - step] = alist[j - step], alist[j]
                j-=step #j每次都是和前面距离长度为step的位置比较
        step //= 2

li = [23, 86, 52, 13, 45, 76, 19, 33, 62]
print(li)
shell_sort(li)
print(li)

4.时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n^2)
  • 稳定想:不稳定

二、快速排序

1.简介

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

2.步骤

从数列中挑出一个元素,称为"基准"(pivot),
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

3.快速排序的分析

image
代码实现:

def quick_sort(alist, start, end):
    """快速排序"""
    # 递归的退出条件
    if start >= end:
        return
    # 设定起始元素为要寻找位置的基准元素
    mid=alist[start]
    low=start
    high=end
    while low < high:
        # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
        while low < high and alist[high] >= mid:
            high -= 1
        # 将high指向的元素放到low的位置上
        alist[low] = alist[high]

        while low < high and alist[low] <mid:
            low += 1
        # 将high指向的元素放到low的位置上
        alist[high] = alist[low]
    # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
    # 将基准元素放到该位置
    alist[low] = mid
    # 对基准元素左边的子序列进行快速排序
    quick_sort(alist, start, low - 1)
    # 对基准元素右边的子序列进行快速排序
    quick_sort(alist, low + 1, end)

li = [23, 86, 52, 13, 45, 76, 19, 33, 62]
print(li)
quick_sort(li,0,len(li)-1)
print(li)

4.时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n^2)
  • 稳定性:不稳定

从一开始快速排序平均需要花费O(nlogn)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(logn)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

0

1

2

3

4

5

6

7

8



所属网站分类: 技术文章 > 博客

作者:智慧星辰

链接: https://www.pythonheidong.com/blog/article/289898/fa9ef4fc251dac5a9218/

来源: python黑洞网

任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任

2 0
收藏该文
已收藏

评论内容:(最多支持255个字符)