暂无分类
暂无标签
发布于2020-04-25 16:20 阅读(245) 评论(0) 点赞(2) 收藏(0)
0
1
2
3
4
5
6
7
8
1、beautifulsoup解析HTML页面:
Beautiful Soup 是一个HTML/XML 的解析器,主要用于解析和提取 HTML/XML 数据。
它基于HTML DOM 的,会载入整个文档,解析整个DOM树,因此时间和内存开销都会大很多,所以性能要低于lxml。
BeautifulSoup 用来解析 HTML 比较简单,API非常人性化,支持CSS选择器、Python标准库中的HTML解析器,也支持 lxml 的 XML解析器。
虽然说BeautifulSoup4 简单容易比较上手,但是匹配效率还是远远不如正则以及xpath的,一般不推荐使用,推荐正则的使用。
2、Beautiful Soup基本元素
Tag 标签,最基本的信息组织单元,分别用<>和</>标明开头和结尾;
Name 标签的名字,
…
的名字是’p’,格式:.name;# 导入库
import requests
from bs4 import BeautifulSoup
import bs4
# 使用bs4的查找方法提取排名,学校名称,总分
def fillUnivList(ulist, html):
soup = BeautifulSoup(html, "html.parser")
for tr in soup.find('tbody').children:
if isinstance(tr, bs4.element.Tag):
tds = tr('td')
# 根据实际提取需要的内容,
ulist.append([tds[0].string, tds[1].string, tds[3].string])
# 对中英文混排输出问题进行优化:对format(),设定宽度和添加参数chr(12288)
def printUnivList(ulist, num=20):
tplt = "{0:^10}\t{1:{3}^10}\t{2:^10}"
print(tplt.format('排名', '学校名称', '总分', chr(12288)))
for i in range(num):
u = ulist[i]
print(tplt.format(u[0], u[1], u[2], chr(12288)))
u_info = [] # 存储爬取结果的容器
url = 'http://www.zuihaodaxue.cn/zuihaodaxuepaiming2019.html'
html = getHTMLText(url)
fillUnivList(u_info, html) # 爬取
printUnivList(u_info, num=30) # 打印输出30个信息
1、xpath
nodename 选取此节点的所有子节点。
/ 从根节点选取。
// 从匹配选择的当前节点选择文档中的节点,而不考虑它们的位置。
. 选取当前节点。
… 选取当前节点的父节点。
@ 选取属性。
/text() 提取标签下面的文本内容
如:
/标签名 逐层提取
/标签名 提取所有名为<>的标签
//标签名[@属性=“属性值”] 提取包含属性为属性值的标签
@属性名 代表取某个属性名的属性值
2、使用lxml解析
导入库:from lxml import etree
lxml将html文本转成xml对象
tree = etree.HTML(html)
用户名称:tree.xpath(’//div[@class=“auth”]/a/text()’)
回复内容:tree.xpath(’//td[@class=“postbody”]’) 因为回复内容中有换行等标签,所以需要用string()来获取数据
爬取丁香园用户名和内容:
# 导入库
from lxml import etree
import requests
url = "http://www.dxy.cn/bbs/thread/626626#626626"
# html 获取html内容
req = requests.get(url)
html = req.text
# lxml解析html
tree = etree.HTML(html)
# 利用xpath 获取用户名和内容
user = tree.xpath('//div[@class="auth"]/a/text()')
# print(user)
content = tree.xpath('//td[@class="postbody"]')
# 保存爬取内容
results = []
for i in range(0, len(user)):
# print(user[i].strip()+":"+content[i].xpath('string(.)').strip())
# print("*"*80)
# 因为回复内容中有换行等标签,所以需要用string()来获取数据
results.append(user[i].strip() + ": " + content[i].xpath('string(.)').strip())
# 打印爬取的结果
for i,result in zip(range(0, len(user)),results):
print("user"+ str(i+1) + "-" + result)
print("*"*100)
结果:
1、正则表达式语法:
. 表示任何单个字符
[ ] 字符集,对单个字符给出取值范围 ,如[abc]表示a、b、c,[a‐z]表示a到z单个字符
[^ ] 非字符集,对单个字符给出排除范围 ,如[^abc]表示非a或b或c的单个字符
# 导入包
import requests
import re
# 提交商品搜索请求,循环获取页面
def getHTMLText(url):
"""
请求获取html,(字符串)
:param url: 爬取网址
:return: 字符串
"""
try:
# 添加头信息,
kv = {
'cookie': 'thw=cn; v=0; t=ab66dffdedcb481f77fd563809639584; cookie2=1f14e41c704ef58f8b66ff509d0d122e; _tb_token_=5e6bed8635536; cna=fGOnFZvieDECAXWIVi96eKju; unb=1864721683; sg=%E4%B8%8B3f; _l_g_=Ug%3D%3D; skt=83871ef3b7a49a0f; cookie1=BqeGegkL%2BLUif2jpoUcc6t6Ogy0RFtJuYXR4VHB7W0A%3D; csg=3f233d33; uc3=vt3=F8dBy3%2F50cpZbAursCI%3D&id2=UondEBnuqeCnfA%3D%3D&nk2=u%2F5wdRaOPk21wDx%2F&lg2=VFC%2FuZ9ayeYq2g%3D%3D; existShop=MTU2MjUyMzkyMw%3D%3D; tracknick=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; lgc=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; _cc_=WqG3DMC9EA%3D%3D; dnk=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; _nk_=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; cookie17=UondEBnuqeCnfA%3D%3D; tg=0; enc=2GbbFv3joWCJmxVZNFLPuxUUDA7QTpES2D5NF0D6T1EIvSUqKbx15CNrsn7nR9g%2Fz8gPUYbZEI95bhHG8M9pwA%3D%3D; hng=CN%7Czh-CN%7CCNY%7C156; mt=ci=32_1; alitrackid=www.taobao.com; lastalitrackid=www.taobao.com; swfstore=97213; x=e%3D1%26p%3D*%26s%3D0%26c%3D0%26f%3D0%26g%3D0%26t%3D0%26__ll%3D-1%26_ato%3D0; uc1=cookie16=UtASsssmPlP%2Ff1IHDsDaPRu%2BPw%3D%3D&cookie21=UIHiLt3xThH8t7YQouiW&cookie15=URm48syIIVrSKA%3D%3D&existShop=false&pas=0&cookie14=UoTaGqj%2FcX1yKw%3D%3D&tag=8&lng=zh_CN; JSESSIONID=A502D8EDDCE7B58F15F170380A767027; isg=BMnJJFqj8FrUHowu4yKyNXcd2PXjvpa98f4aQWs-RbDvsunEs2bNGLfj8BYE6lWA; l=cBTDZx2mqxnxDRr0BOCanurza77OSIRYYuPzaNbMi_5dd6T114_OkmrjfF96VjWdO2LB4G2npwJ9-etkZ1QoqpJRWkvP.; whl=-1%260%260%261562528831082',
'user-agent': 'Mozilla/5.0'
}
r = requests.get(url, timeout=30, headers=kv)
# r = requests.get(url, timeout=30)
# print(r.status_code)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return "爬取失败"
# 对每个页面,提取商品名称和价格信息
def parsePage(glist, html):
'''
解析网页,搜索需要的信息
:param glist: 列表作为存储容器
:param html: 由getHTMLText()得到的
:return: 商品信息的列表
'''
try:
# 使用正则表达式提取信息
price_list = re.findall(r'\"view_price\"\:\"[\d\.]*\"', html)
name_list = re.findall(r'\"raw_title\"\:\".*?\"', html)
for i in range(len(price_list)):
price = eval(price_list[i].split(":")[1]) #eval()在此可以去掉""
name = eval(name_list[i].split(":")[1])
glist.append([price, name])
except:
print("解析失败")
# 打印爬取信息
def printGoodList(glist):
tplt = "{0:^4}\t{1:^6}\t{2:^10}"
print(tplt.format("序号", "商品价格", "商品名称"))
count = 0
for g in glist:
count = count + 1
print(tplt.format(count, g[0], g[1]))
# 根据页面url的变化寻找规律,构建爬取url
goods_name = "书包" # 搜索商品类型
start_url = "https://s.taobao.com/search?q=" + goods_name
info_list = []
page = 3 # 爬取页面数量
count = 0
for i in range(page):
count += 1
try:
url = start_url + "&s=" + str(44 * i)
html = getHTMLText(url) # 爬取url
parsePage(info_list, html) #解析HTML和爬取内容
print("\r爬取页面当前进度: {:.2f}%".format(count * 100 / page), end="") # 显示进度条
except:
continue
printGoodList(info_list)
原文链接:https://blog.csdn.net/qq_44798484/article/details/105720576
0
1
2
3
4
5
作者:9384vfnv
链接: https://www.pythonheidong.com/blog/article/343614/7ff9a3a7bdeadab3d8a8/
来源: python黑洞网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
Copyright © 2018-2021 python黑洞网 All Rights Reserved 版权所有,并保留所有权利。 京ICP备18063182号-1
投诉与举报,广告合作请联系z452as@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!