+关注
已关注

分类  

暂无分类

标签  

暂无标签

日期归档  

2020-03(54)

2020-04(62)

2020-05(27)

2020-06(44)

2020-07(35)

荐Numpy学习笔记:二

发布于2020-06-25 19:38     阅读(986)     评论(0)     点赞(9)     收藏(0)


0

1

2

3

4

5

6

7

8

9

Numpy学习笔记-仅供学习使用

Numpy通用函数
基本操作

# 数组形状:.T/.reshape()/.resize()
import numpy as np
ar1 = np.arange(10)
ar2 = np.ones((5,2))
print(ar1,'\n',ar1.T)
print(ar2,'\n',ar2.T)
print('------')
# T方法:转置,例如原shape为(3,4)/(2,3,4),转置结果为(4,3)/(4,3,2) → 所以一维数组转置后结果不变

ar3 = ar1.reshape(2,5)     # 用法1:直接将已有数组改变形状             
ar4 = np.zeros((4,6)).reshape(3,8)   # 用法2:生成数组后直接改变形状
ar5 = np.reshape(np.arange(12),(3,4))   # 用法3:参数内添加数组,目标形状
print(ar1,'\n',ar3)
print(ar4)
print(ar5)
# numpy.reshape(a, newshape, order='C'):为数组提供新形状,而不更改其数据,所以元素数量需要一致!!
print('------')


ar6 = np.resize(np.arange(5),(3,4))
print(ar6)
# numpy.resize(a, new_shape):返回具有指定形状的新数组,如有必要可重复填充所需数量的元素。
# 注意了:.T/.reshape()/.resize()都是生成新的数组!!!
# 数组的复制

ar1 = np.arange(10)
ar2 = ar1
print(ar2 is ar1)
ar1[2] = 9
print(ar1,ar2)
# 回忆python的赋值逻辑:指向内存中生成的一个值 → 这里ar1和ar2指向同一个值,所以ar1改变,ar2一起改变

ar3 = ar1.copy()
print(ar3 is ar1)
ar1[0] = 9
print(ar1,ar3)
# copy方法生成数组及其数据的完整拷贝
# 再次提醒:.T/.reshape()/.resize()都是生成新的数组!!!
# 数组类型转换:.astype()

ar1 = np.arange(10,dtype=float)
print(ar1,ar1.dtype)
print('-----')
# 可以在参数位置设置数组类型

ar2 = ar1.astype(np.int32)
print(ar2,ar2.dtype)
print(ar1,ar1.dtype)
# a.astype():转换数组类型
# 注意:养成好习惯,数组类型用np.int32,而不是直接int32

# 数组堆叠

# numpy.hstack(tup):水平(按列顺序)堆叠数组
a = np.arange(5)    # a为一维数组,5个元素
b = np.arange(5,9) # b为一维数组,4个元素
ar1 = np.hstack((a,b))#hstack:横向连接  # 注意:((a,b)),这里形状可以不一样
print(a,a.shape)
print(b,b.shape)
print(ar1,ar1.shape)
a = np.array([[1],[2],[3]])   # a为二维数组,3行1列
b = np.array([['a'],['b'],['c']])  # b为二维数组,3行1列
ar2 = np.hstack((a,b))  # 注意:((a,b)),这里形状必须一样
print(a,a.shape)
print(b,b.shape)
print(ar2,ar2.shape)
print('-----')
# numpy.hstack(tup):水平(按列顺序)堆叠数组


# numpy.vstack(tup):垂直(按列顺序)堆叠数组
a = np.arange(5)    
b = np.arange(5,10)
ar1 = np.vstack((a,b))
print(a,a.shape)
print(b,b.shape)
print(ar1,ar1.shape)
a = np.array([[1],[2],[3]])   
b = np.array([['a'],['b'],['c'],['d']])   
ar2 = np.vstack((a,b))  # 这里形状可以不一样
print(a,a.shape)
print(b,b.shape)
print(ar2,ar2.shape)
print('-----')
# numpy.vstack(tup):垂直(按列顺序)堆叠数组

a = np.arange(5)    
b = np.arange(5,10)
ar1 = np.stack((a,b),axis = 0) #axis:默认为0
ar2 = np.stack((a,b),axis = 1)
print(a,a.shape)
print(b,b.shape)
print(ar1,ar1.shape)
print(ar2,ar2.shape)
# numpy.stack(arrays, axis=0):沿着新轴连接数组的序列,形状必须一样!
# 重点解释axis参数的意思,假设两个数组[1 2 3]和[4 5 6],shape均为(3,0)
# axis=0:[[1 2 3] [4 5 6]],shape为(2,3)
# axis=1:[[1 4] [2 5] [3 6]],shape为(3,2)
# 数组拆分 

ar = np.arange(16).reshape(4,4)
ar1 = np.hsplit(ar,2)
print(ar)
print(ar1,type(ar1))
# numpy.hsplit(ary, indices_or_sections):将数组水平(逐列)拆分为多个子数组 → 按列拆分
# 输出结果为列表,列表中元素为数组


ar2 = np.vsplit(ar,4)##将数组垂直(行方向)拆分为多个子数组 → 按行拆  这里的4,表示4行,一排一个array
print('vsplit:',ar2,type(ar2))
# numpy.vsplit(ary, indices_or_sections)::将数组垂直(行方向)拆分为多个子数组 → 按行拆


# 数组简单运算

ar = np.arange(6).reshape(2,3)
print(ar + 10)   # 加法
print(ar * 2)   # 乘法
print(1 / (ar+1))  # 除法
print(ar ** 0.5)  # 幂
# 与标量的运算

print(ar.mean())  # 求平均值
print(ar.max())  # 求最大值
print(ar.min())  # 求最小值
print(ar.std())  # 求标准差
print(ar.var())  # 求方差
print(ar.sum(), np.sum(ar,axis = 0))  # 求和,np.sum() → axis为0,按列求和;axis为1,按行求和
print(np.sort(np.array([1,4,3,2,5,6])))  # 排序
# 常用函数

原文链接:https://blog.csdn.net/FreeTime_9527/article/details/106935419

0

1

2

3

4

5



所属网站分类: 技术文章 > 博客

作者:一切都会好起来over

链接: https://www.pythonheidong.com/blog/article/430220/975fe2c20253b837fcad/

来源: python黑洞网

任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任

9 0
收藏该文
已收藏

评论内容:(最多支持255个字符)