发布于2019-08-19 17:27 阅读(837) 评论(0) 点赞(5) 收藏(4)
Opencv识别两张图片的不同部分demo:
import cv2
import numpy as np
from matplotlib import pyplot as plt
import argparse
def matchAB(fileA, fileB):
# 读取图像数据
imgA = cv2.imread(fileA)
imgB = cv2.imread(fileB)
# 转换成灰色
grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY)
# 获取图片A的大小
height, width = grayA.shape
# 取局部图像,寻找匹配位置
result_window = np.zeros((height, width), dtype=imgA.dtype)
for start_y in range(0, height-100, 10):
for start_x in range(0, width-100, 10):
window = grayA[start_y:start_y+100, start_x:start_x+100]
match = cv2.matchTemplate(grayB, window, cv2.TM_CCOEFF_NORMED)
_, _, _, max_loc = cv2.minMaxLoc(match)
matched_window = grayB[max_loc[1]:max_loc[1]+100, max_loc[0]:max_loc[0]+100]
result = cv2.absdiff(window, matched_window)
result_window[start_y:start_y+100, start_x:start_x+100] = result
# 用四边形圈出不同部分
_, result_window_bin = cv2.threshold(result_window, 30, 255, cv2.THRESH_BINARY)
_, contours, _ = cv2.findContours(result_window_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
imgC = imgA.copy()
for contour in contours:
min = np.nanmin(contour, 0)
max = np.nanmax(contour, 0)
loc1 = (min[0][0], min[0][1])
loc2 = (max[0][0], max[0][1])
cv2.rectangle(imgC, loc1, loc2, 255, 2)
plt.subplot(1, 3, 1), plt.imshow(cv2.cvtColor(imgA, cv2.COLOR_BGR2RGB)), plt.title('A'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 2), plt.imshow(cv2.cvtColor(imgB, cv2.COLOR_BGR2RGB)), plt.title('B'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 3), plt.imshow(cv2.cvtColor(imgC, cv2.COLOR_BGR2RGB)), plt.title('Answer'), plt.xticks([]), plt.yticks([])
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--source_image',
type=str,
default='img/image01-0.png',
help='source image'
)
parser.add_argument(
'--target_image',
type=str,
default='img/image01-1.png',
help='target image'
)
FLAGS, unparsed = parser.parse_known_args()
matchAB(FLAGS.source_image, FLAGS.target_image)
Opencv图片重合匹配
import cv2
import numpy as np
from matplotlib import pyplot as plt
import argparse
def matchAB(fileA, fileB):
# 读取图像数据
imgA = cv2.imread(fileA)
imgB = cv2.imread(fileB)
# 转换成灰色
grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY)
# 获取图片A的大小
height, width = grayA.shape
# 取局部图像,寻找匹配位置
result_window = np.zeros((height, width), dtype=imgA.dtype)
for start_y in range(0, height-100, 10):
for start_x in range(0, width-100, 10):
window = grayA[start_y:start_y+100, start_x:start_x+100]
match = cv2.matchTemplate(grayB, window, cv2.TM_CCOEFF_NORMED)
_, _, _, max_loc = cv2.minMaxLoc(match)
matched_window = grayB[max_loc[1]:max_loc[1]+100, max_loc[0]:max_loc[0]+100]
result = cv2.absdiff(window, matched_window)
result_window[start_y:start_y+100, start_x:start_x+100] = result
# 用四边形圈出不同部分
_, result_window_bin = cv2.threshold(result_window, 30, 255, cv2.THRESH_BINARY)
_, contours, _ = cv2.findContours(result_window_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
imgC = imgA.copy()
for contour in contours:
min = np.nanmin(contour, 0)
max = np.nanmax(contour, 0)
loc1 = (min[0][0], min[0][1])
loc2 = (max[0][0], max[0][1])
cv2.rectangle(imgC, loc1, loc2, 255, 2)
plt.subplot(1, 3, 1), plt.imshow(cv2.cvtColor(imgA, cv2.COLOR_BGR2RGB)), plt.title('A'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 2), plt.imshow(cv2.cvtColor(imgB, cv2.COLOR_BGR2RGB)), plt.title('B'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 3), plt.imshow(cv2.cvtColor(imgC, cv2.COLOR_BGR2RGB)), plt.title('Answer'), plt.xticks([]), plt.yticks([])
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--source_image',
type=str,
default='img/image01-0.png',
help='source image'
)
parser.add_argument(
'--target_image',
type=str,
default='img/image01-1.png',
help='target image'
)
FLAGS, unparsed = parser.parse_known_args()
matchAB(FLAGS.source_image, FLAGS.target_image)
作者:239289
链接:https://www.pythonheidong.com/blog/article/48865/93d8b8a829e9861f5ebf/
来源:python黑洞网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
---无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事,而不是让内心的烦躁、焦虑,坏掉你本来就不多的热情和定力
Copyright © 2018-2021 python黑洞网 All Rights Reserved 版权所有,并保留所有权利。 京ICP备18063182号-1
投诉与举报,广告合作请联系vgs_info@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!